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Abstract

Artificial Intelligence (Al) is increasingly becoming a potential answer to many of science’s most challenging problems. In
this context, healthcare is using this technology and its advancement to improve the quality of services provided, including
cardiac healthcare services. According to studies, Cardiovascular Diseases (CVDs) are among the most common and
deadly diseases in the world. However, Artificial Intelligence and its branches such as Machine Learning (ML) and Deep
Learning (DL) offer tremendous potential to improve disease diagnosis and even predict its occurrence. In this study, eight
Machine Learning and Deep Learning models are created and trained with "PhsyioNet Smart Health for Assessing the
Risk of Events via ECG Database" to analyze the characteristics of Heart Rate Variability and predict the occurrence of
heart disease and cerebrovascular events. The results support the use of Artificial Intelligence in cardiology, with five of the
proposed models outperforming previous implementations. Specifically, Support Vector Machines, TabTransformers, Deep
Neural Networks, AdaBoost, and XGBoost achieved accuracy rates of 91.80%, 90.38%, 90.19%, 89.50%, and 89.10%,
respectively. Further performance metrics are presented throught the article such as precision, recall and others.
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1. Introduction 1.1. Al in Healthcare: A New Cardiology Era

Cardiovascular Disease causes the most deaths and is therefore
considered the most dangerous disease in the world. According
to the latest data from the World Health Organization (WHO) in
the field of heart disease, the number of deaths caused by these
diseases has increased from 12.1 million in 1990 to 18.6 million in
2019, accounting for 32% of global mortality in 2019. In addition,
CVDs is a significant source of health conflict and economic hard-
ship. Based on the Medical Expenditure Panel Survey, the cost of
CVDs in the United States between 2017 and 2018 was estimated
at $378.0 billion, including $226.0 billion in expenditures and
$151.8 billion in lost future productivity [1, 2].

The potential for Al to automate processes, enhance decision-
making, and enable new discoveries has broad implications, with
possible applications in healthcare [3],transportation [4], industry
[5], luxury [6] and more. Smart health, for instance, is the use of
computational methods, data analysis, and artificial intelligence
to the healthcare industry with the goal of enhancing patient care,
administrative efficiency, and clinical results [3] and in enabling
diseases prediction. However, the deadly nature of Cardiovascular
Diseases necessitates the development of effective solutions that
can help in the early detection of these diseases and, if possible,
even predict their development. Electrocardiogram, Echocardio-
gram, Coronary Angiography, stress test, Magnetic Resonance
Imaging or Intracoronary Ultrasound are traditional methods to
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detect these diseases. However, technological advances, par-
ticularly Information and Communication Technologies (ICTs)
and the growth of Artificial Intelligence and its derivatives, are
improving the quality of healthcare services and facilitating the
detection of CVDs. In addition, Al technologies are considered
the next revolution in cardiology because they can accelerate and
improve patient care outcomes. Moreover, Al will soon transform
the field of cardiovascular health, as its tools could outperform
specialists in detecting or even predicting CVDs [7, 8].

1.2. Heart Rate Variability as a CVD Indicator

Recently, there has been arise in interest in using Heart Rate Vari-
ability (HRV) as a predictor of CVDs, particularly with the advent
of Al and the data analysis capabilities afforded by its branches:
Machine Learning and Deep Learning. Furthermore, HRYV is defi-
ned as the beat-to-beat variation in heart rate or the length of the
RR peak interval, where R is a QRS complex wave taken from
a cardiac ECG signal. Because changes in the autonomic con-
trol of the heart may be interpreted from temporal fluctuations in
heart rate, the parameters retrieved from HRV data are classified
into three types: time domain, frequency domain, and non-linear
parameters [9]. Table 1 below lists these categories:

Table 1. Heart Rate Variability Parameters.

Group Parameter  Unit  Description

Mean NN (ms) Mean of NN interval

Time SDNN (ms)  Standard deviation of NN intervals
Domain
Parameters  RMSSD (ms)  Square root of the mean squared differences of successive NN intervals
pNNS50 (ms) Proportion of interval differences of successive NN intervals greater than 50 ms
VLF (msz) Power in very low frequency range (0-0.04 Hz)
Frequency  LF (ms2)  Power in low frequency range (0.04-0.15 Hz)
Domain P
parameters HF (ms2)  HF ms2 Power in high frequency range (0.15-0.4 Hz)
LF/HF (ratio)  Ratio of LF over HF
SDI (ms) Standard deviation of points perpendicular to the axis of line of identity or the
Non- successive intervals scaled by /& /S var(RRy — RRpyp)
Linear SD2 (ms) Standard deviation of points along the axis of line of identity, or

Parameters

V2sDNN2 — Lsp1?

SD1/SD2 (ratio)  Ratio of SD1 over SD2

1.3. Prediction of CVDs with HRV; State of the Art

There has been a surge in recent years in the number of resea-
rches looking at the ability to diagnose CVDs by measuring HRV
characteristics. Al has demonstrated its efficacy and precision in
this field, and researchers are increasingly turning to Al models
to examine a wide range of HRV data.

In [10], for instance, the authors constructed a model to assess
several HRV variables and predict the onset of ventricular tach-
ycardia (VT) using the Fast Fourier Transform (FFT) and the
Blackman Harris window technique. Additionally, the authors
in [11] created an Artificial Neural Networks (ANN) classifier
to predict the incidence of VT and trained it using the "Physi-
oNet Spontaneous Ventricular Tachyarrhythmia Database" [12].
They used a number of different criteria to assess performance,
recording rates of 76.60% for accuracy, 82.9% for sensitivity,
and 71.4% for specificity. In addition, the authors of [13] emplo-
yed Multilayer Perceptron (MLP), Radial Basis Function (RBF),
and Support Vector Machines (SVM) to make predictions about
cardiovascular risk. Accuracy of their best model was 96.67%.

Additionally, authors in [14] employed SVM to create a predi-
ction model to predict cardiovascular risk following Myocardial
Infarction, and the model accuracy was 89%.

In addition, the authors of [15] used the k-Nearest Neighbor
and Multilayer Perceptron Neural Network algorithms to develop
models that predict Sudden Cardiac Death (SCD). Their models
were trained using the "PhysioNet Sudden Cardiac Death Holter
database" [16] and the "PhysioNet Normal Sinus Rhythm data-
base" [17], and their results showed an accuracy of 99.73% for
the first minute, 96.52% for the second minute, 90.37% for the
third minute, and 83.96% for the fourth minute. And in [18],
authors performed the same study using SVM and Probabilistic
Neural Network (PNN) to predict SCD two minutes beforehand.
SVM and PNN achieved 96.36% and 93.64% accuracy in predi-
cting sudden cardiac death using the "PhysioNet Sudden Cardiac
Death Holter database" [16] and the "PhysioNet MIT Normal
Sinus Rhythm database" [17].

Besides, in [19], the authors developed a novel SVM, Tree-
Based Classifier, Artificial Neural Network, and Random Forest
models to automate cardiovascular risk classification for hyper-
tension patients. Using the "Smart Health for Assessing the Risk
of Events through ECG database" [20], the authors were able
to train their data with a sensitivity of 71.4% and a specificity
of 87.8%. In addition, authors in [21] created an Artificial Neu-
ral Networks model that examines respiratory rate in addition to
HRV data to identify ventricular tachycardia an hour before it
manifests. Their model has a sensitivity of 88%, a specificity of
82%, and an area under the curve of 93%. The authors in [22]
also employed a statistical model called MIL to predict CVDs
using HRV characteristics. As they noted, their model was quite
accurate. In addition, the authors of [23] developed and trained a
variety of classification methods, including K Nearest Neighbor,
Decision Tree, Naive Bayes, Logistic Regression, Support Vector
Machine, Neural Network, and Vote. They used the "UCI Heart
Diseases Repository" [24], to train their models. It was shown
that the models had an accuracy of 87.4% in predicting CVDs.

1.4. Outline & Main Contributions

Several Al models were developed in this study to predict CVDs
and related events where eight different models were implemen-
ted. The dataset and the preparation processes that were performed
to get the data ready for the models are described in Section 2.
below. A description of the models developed may be found in
Section 3., while Section 4. contains a listing and discussion of
the results.

Despite the fact that several Machine Learning implementati-
ons have been performed in CVD detection and prediction, this
article aims to propose ML models that have either never been
used in this field or to propose models already in use and improve
their performance. Therefore, this article aims to propose ML
models capable of predicting CVDs with improved performance
that outperforms previous implementations. The result obtained
by the models is a binary result, stating whether a CVD is detected
or not. The article thus contributes to the ML field in predicting
CVDs:

o Proposing use of new models in the prediction of CVDs
o Enhancing and boosting the performance of ML in CVDs
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2. Materials & Methods
2.1. Dataset

The dataset used in this study is the "PhysioNet Smart Health for
Assessing the Risk of Events via ECG Database" (SHAREEDB)
[20] that is offered by the PhysioNet online data repository. This
dataset was collected to investigate the efficiency of classifying
hypertensive patients at higher risk for cardiac and cerebrovascu-
lar events using HRV characteristics. It consists of 139 records
of 24-hour Electrocardiographic (ECG) Holter recordings, each
containing three ECG signals sampled at a rate of 128 samples
per second with a precision of 8 bits. The population from which
the data were gathered included 49 women and 90 men aged 55
and up. They were followed up for 12 months to record the occur-
rence of cardiovascular and cerebrovascular events. During the
follow-up period, 17 patients experienced such event, including
11 Myocardial Infarctions, 3 strokes, and 3 syncopal events. The
dataset also includes some demographic and clinical information
about the subjects, such as their age, sex, any vascular events, and
others. Figure 1 below describes the specifications of the dataset
in use: SHAREEDB.

Smart Health for Assessing the Risk of Events via ECG database (SHAREEDB)

PhysioNet — open source 55 and over

Three ECG signals each
sampled at 128 samples per
second with 8-bit precision

NI  Followed up for 12 months to
Up record cardiovascular events

17 patients with events
+ 11 Myocardial Infarction

+ 3 strokes

+ 3 syncopal events

24 hours Events

. Age
+ Gender

+ Eventual vascular event

+ Systolic & Diastolic arteriosus pressure

Additional

49 females & 90 males Info

Fig. 1. SHAREEDB Description and Specs.

2.2. Data Filtering & Preprocessing

Since the SHAREEDB dataset contains Electrocardiogram (ECG)
signals gathered in a laboratory, there may be substantial back-
ground noise that must be eliminated before the data is fed into the
Al models. Before feeding the data into the models, it is crucial
to clean the data and eliminate the noise in order to produce high-
quality ECG signals. Briefly described below are the procedures
used to clean and prepare the data for this study:

2.2.1. Filtering & Artifacts Removal

The 3-channel ECG Holter device was used to record the data
included in the dataset files. A normal ECG signal has a frequency
range of 0.05 Hz to 100 Hz. However, there are a number of signals
interreferences that may affect ECG recordings, including base-
line drift, channel interference, power line interference, muscle
movement interference, and electrode contact interference. Raw
ECG readings often include two forms of noise [25]:

o High frequency noise: current conduction noise, white Gaus-
sian noise, Electromyogram or motion noise.
o Low-frequency noise: baseline drift and electrode contact loss

We can successfully identify the kind of noise and then pick
the approaches to employ to decrease the noise or eradicate the
artifact if we have a thorough grasp of each noise artifact. Various
sounds are caused by various things, including:

e Power Line Interference: is caused by harmonics of ele-
ctromagnetic interference through the power line and the
electromagnetic field of nearby electrical equipment and is
between 50 Hz and 60 Hz.

o White Gaussian Noise: is similar to channel noise in nature
but is difficult to identify its sources because they occur at
different levels and are random in nature.

o Electromyogram/Motion Noise: generated by the electrical
activity of the muscles or the change in the electrode-skin
impedance due to changes in skin temperature, humidity, etc.

o Baseline Drift: low-frequency noise, typically around 1 Hz
and caused by respiration and rapid body movements

o FElectrode Contact Loss: is caused by loss of contact between
the electrode and the skin

Because of this, the following filters are effective in getting rid
of both low-frequency and high-frequency artifacts and has been
adopted, in this study, to clean the data before being used:

o IR Notch Filters: are used to remove power line interference
and/or motion artifacts in a specific frequency spectrum

o FIR Filters: are very stable filters and operate in the range of
1 Hz to 100 Hz making them suitable for ECG data cleaning

2.2.2. R Peaks Detection

The electrical activity of the heart muscle may be seen in an ECG
signal throughout time. The ECG represents the amplified sum of
the electrical depolarization of muscle cells that causes the heart
muscle to contract during a certain time period. Three compo-
nents make up the electrocardiogram signal: The P-Wave, the
QRS complex, and the T-wave. The ventricular depolarization
represented by the QRS complex is the electrical impulse as it
travels through the ventricles. Immediately following each other
in rapid succession are the Q wave, the R wave, and the S wave.
Because HRYV is defined as the difference between two succes-
sive RR periods, the R Peaks are the peaks to be discovered in
this investigation. The R Peaks may be found using any of the
available detection methods [26, 27]. These algorithms include:

e Hamilton

o Christov

o Engelse and Zeelenberg

¢ Pan and Tompkins

o Stationary Wavelet Transform
e Two Moving Average

According to [27], Engelse and Zeelenberg was selected as
the most accurate peak detection algorithm. Although the tests
were performed on a different data set, Engelse and Zeelenberg
was selected for R peak detection in this study based on the
recommendation of authors.

2.2.3. Calculation of RR Intervals

Heart Rate Variability is defined as the RR intervals or the differe-
nce between two consecutive R peaks, which are then calculated
using the required equations.
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2.2.4. Outliers Removal

After the RR intervals are detected, the outliers, defined as points
that are extremely far from the mean, are removed and replaced
with the mean value.

2.2.5. Extract HRV features

Finally, the HRV features were calculated using the appropriate
mathematical formulas. In this study, 26 HRV features were calcu-
lated, and despite the high number of features calculated, the use
of all features gave good results.

2.3. Artificial Intelligence Models

Cardiology is defined as the healthcare sector concerned with
heart health, and the usage of Al in this discipline is rapidly
expanding. Al has showed excellent accuracy and efficiency in
identifying CVDs, and owing to its strong capacity to evaluate
cardiac data, it may sometimes go beyond professional diagnosis
and even be utilized in predicting CVDs rather than detecting them
[28, 29]. Furthermore, Al is notable for its diverse branches that
are applied in various aspects of life all over the globe. Figure 2
below shows the different branches of Al In this research, Al bra-
nches such as Machine Learning, Ensemble Learning, and Deep
Convolutional Neural Networks were applied:

o Classical Machine Learning Algorithms [30]: are algori-
thms that give computers learning potential by training them
with experimental data and generating models based on these
data, enabling them to make decisions in new situations such
as: Support Vector Machines, Naive Bayes, Logistic and
Linear Regression and others.

o Ensemble Learning [31]: is a special branch of ML where
its algorithms are based on merging predictions from diffe-
rent models. Some of these models are XGBoost, AdaBoost,
Gradient Boosting, LightGBM and others.

o Deep Convolutional Neural Networks (DCNNs) [30]: are a
type of Neural Networks that are used to analyze data with a
grid-like structure. However, these networks are intended for
analyzing multidimensional data such as images and videos.
Using these networks to analyze tabular data may require
transforming the data used. Nevertheless, there are several
models that offer transformation of tabular data for use in
DCNN:s, such as TabNet, GrowNet, TreeEnsemble Layers,
TabTransformers, Self-Normalizing Neural Networks, Neural
Oblivious Decision Ensembles (NODE), Autolnt, and Deep
& Cross Neural Networks (DCNs) [32].

3. Construction of AI Models

In this study, different AI models were used to analyze HRV fea-
tures to detect heart diseases and events. However, before passing
the extracted features to the models, some data fitting steps were
performed, as explained below.

3.1. Data Adjustment

Given that only 17 of the 139 patients in the research suffered a
cardiovascular event throughout the 12-month follow-up period,

P Artificial Intelligence |

~ Machine Learning

Deep Learning

Classical \“f Ensemble

Convolutional

| Algorithms
'\ \_ Neural Networks /

Learning

Fig. 2. SHAREEDB Description and Specs.

the retrieved HRV features show an unbalanced identity, with the
majority falling into the "no cardiovascular event" class. Because
the percentage of non-defected subjects is 122 of 139, the per-
formance of the prediction models may be harmed, implying the
usage of data modifications such as balancing and scaling:

o Synthetic Minority Over-sampling Technique (SMOTE): a
data expansion in which new samples are drawn from existing
ones to oversample the minority class

o Preprocessing Standard Scaling: the standardization of cha-
racteristics is achieved by removing the mean of the data and
scaling it to a unit variance

3.2. Building the Models; Hyperparameters to be Considered

After applying the necessary data fitting steps to the extracted
HRV features, they are then passed to the models created for
fitting with the thresholds listed below:

3.2.1. Support Vector Machines

SVM is a supervised Machine Learning algorithm that is fed labe-
led training data to learn how to assign labels to objects based on
examples, and then gain the ability to predict the category of new
example(s) [30]. The performance of the SVM model is affected
by the following hyperparameters [33]:

o Kernel: the function that converts the input data into the requi-
red form such as linear, polynomial and radial basis function
(RBF).

o Regularization: denotes the misclassification or error term
and is expressed as hyperparameter "C".

o Gamma: interpret how far the effect of a single training
sample extends

o Class Weight: used for imbalanced datasets and defines the
weight of the classes to be predicted

3.2.2. TabTransformers

TabTransformers is a model based on transformers whose layers
convert categorical feature embeddings into robust contextual
embeddings to achieve higher prediction accuracy, and is affected
by the following hyperparameters [34]:

o Activation Function: defines how the weighted sum of the
input is converted into an output of a node in a network layer
o Number of Heads: specifies the number of heads of attention
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o Dropout: regularization to reduce overfitting and improve
generalization of deep neural networks

o MLP Hidden Units Factors: MLP hidden layer units, as
factors of the number of inputs.

o Learning Rate: is the shrinkage step size used in updating to
prevent overfitting

3.2.3. Deep Neural Networks

These networks are algorithms that mimic human brain cells cal-
led neurons. In general, these networks use brain simulations to
improve their learning and increase the accuracy of the models.
The structure of DNNs consists of more than two interconnected
layers and is affected by the following hyperparameters [35]:

o Number of Layers: input, output, and the hidden layers that
define the structure of the network.

o Units: denotes the output of each layer.

o Activation Function: also known as the "transfer function",
which defines how the weighted sum of the input is converted
into an output from one or more nodes in a layer of the network

o Number of Epochs: a complete pass through all rows of the
training data

o Batch Size: samples that the model examines within each
epoch before updating the weights

o Learning Rates: a variable that controls how the optimizer’s
learning rate changes over time

o Momentum: is the "delay" in learning the mean and variance

3.2.4. AdaBoost

AdaBoost is a meta-estimator that first fits a classifier to the ori-
ginal data and then fits additional copies of the classifier to the
same data, changing the weights of misclassified instances so that
subsequent classifiers examine them extensively, leading to an
improved result [36]:

o Number of Estimators: the number of base estimators or
weak learners to be used in the dataset

o Learning Rate: is the step size used in the update to prevent
overfitting

3.2.5. XGBoost

XGBoost is an Ensemble Learning algorithm that also belongs
also to the Machine Learning Al Branch. XGBoost, eXtreme
Gradient Boosting package, is a scalable implementation of the
gradient boosting framework built with an efficient linear model
solver and a tree learning algorithm with hyperparameters [37]:

o Booster: the type of model to run at each iteration

o Learning Rate: is the step size shrinkage used during the
update to prevent overfitting

¢ Gamma: specifies the minimum loss reduction required to
perform splitting

o Max Depth: the parameter used to control overfitting, as a
higher depth allows the model to learn relationships that are
very specific to a given sample

e Min Child Weight: defines the minimum sum of weights of
all observations required in a child

o Max Delta Step: makes updating more conservative

o Sub Sample: denotes the fraction of observations that are
randomly selected for each tree

o Lambdas: is used to handle the regularization part

o Alpha: is used in case of very high dimensionality to make
the algorithm run faster during implementation

o Tree Method: Algorithm for tree construction

o Scale Weight: control the weight of positive-negative classes

o Objective: defines the loss function to be minimized

3.2.6. Logistic Regression

Logistic Regression is a Machine Learning algorithm that analy-
zes data for classification and is a supervised algorithm that sorts
data into two categories. The algorithm is named after the function
that is at the core of the method, the logistic function. There are
several forms for LR and in this article we will use binary logi-
stic regression, where the target variable has only two possible
outcomes. The performance of LR is affected by three important
hyperparameters [38]:

e Solver: uses a Coordinate Descent (CD) algorithm that solves
optimization problems by successively performing approxi-
mate minimization along coordinate directions or coordinate
hyperplanes

o Penalty (Regularization): is any modification of a learning
algorithm that aims to reduce its generalization error, but not
its training error

e C: the inverse of the regularization strength in Logistic
Regression

o Class Weight: weight of the classes to be predicted

3.2.7. TabNet

TabNet is a model that uses sequential attention to select which
features to infer at each decision step, and is influenced by the
following hyperparameters [39]:

e Optimizer: an algorithm that modifies the neural network
attributes, such as weights and learning rate.

o Learning Rate: is the step size used in updating to prevent
overfitting

« Batch Size: number of examples per batch.

3.2.8. Deep Convolutional Neural Networks: Neural Oblivious
Decision Ensembles (NODE)

Neural Oblivious Decision Ensembles is a model with a layered
structure built from differentiable oblivious trees, which are deci-
sion tables that decompose the data along dd-splitting features
and compare each feature to a learned threshold. It was trained in
an end-to-end manner using backpropagation and is affected by
the following hyperparameters [40]:

e Number of Layers: Number of layers forming the Neural
Network

e Number of Trees: Number of trees in each layer

e Depth: Depth of the tree

o Learning Rate: is the shrinkage step size used in the update to
prevent overfitting
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3.3. Technical Environment Specifications

To implement this study, the computer used carried the below
mentioned specifications:

o Hardware Specs:

e CPU: Intel(R) Core i7-7500U CPU @ 2.70GHz
¢ RAM: 16.0 GB DDR4

¢ Operating System:Windows 10 Home
¢ Programming Language Used: python 3.9
o Libraries Used:

o wifdb: used to read data from the PhysioNet binary files [41]

o Scipy Signal Library: provides efficient functions for both
IIR Notch and FIR filters [42]

o py-ecg-detectors:provide R Peaks detection algorithms [43]

o Scipy Zscore: used for outliers’ removal [44]

e SMOTE: to apply Synthetic Minority Over-sampling [45]

o SKLearn Preprocessing Standard Scaling: to apply stan-
dard scaling [46]

3.4. Wrapping Up, Training, Prediction, and Optimization

Once the models were created, they were trained using the extra-
cted HRV features. The models were then evaluated using several
performance metrics, namely accuracy, precision, recall, F1
score, specificity, and negative predictive value. The results obtai-
ned are detailed and discussed in the next section. Figure 3 below
describes the overall structure of the implemented system.

Read raw data from SHAREEDB
) High pass (High Cut-off) Filter
Artifact
& Low pass (Low Cut-off) Filter
Noise R 7al
olse Bemova Notch Filter

Deep Neural

Support Vector
Machine WEATOS
AdaBoost  —
Logistic
Regression

Fig. 3. Overall Architecture Followed in this Study.

|

4. Results & Discussion

The created models were trained with the HRV features. The eight
models were evaluated with the metrics of Accuracy, Precision,
Recall, Specificity, Negative Predictive Value NPV, and F1 Score.
For better measurement, and to be aware of overfitting, Repeated
K-fold Cross Validation [47] was implemented with 10 folds and
repeated 5 times. Beside detection of overfitting, the use of K-fold
cross validation ensure that the recorded results are not obtained
from an optimistic execution. Consequently, the performance gra-
phs are illustrated in Figure 4, 5 & 6 respectively, where the first
shows the graphs for classical ML models, the second shows the
graphs related to Ensemble ML models and the third shows the
graphs of the DL models. In addition, the results are shown in
Table 2 below, and the values of accuracy, precision, recall, spe-
cificity, negative predictive value, and F1 score are denoted as AC,
PR, RE, SP, NPV, and F1, respectively. In addition, the values of
the hyperparameters used are listed in the table.

2) Support Vector Machines Area Under Curve

b) Logistic Regression Area Under Curve

Fig. 4. Classical ML Models Performance Graphs.

) AdaBoost Area Under Curve

b) XGBoost Area Under Curve

Fig. 5. Ensemble Learning ML Models Performance Graphs.

b) DNN Training

| wf|

©) TabNet Area Under Curve d) TabNet Training Loss Graph ) NODE Trainiy

Fig. 6. Deep Learning Models Performance Graphs.
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Table 2. AT Models Evaluation Metrics & Hyperparameters Used.

# Model

Hyperparameters Used

Parameter

Value

AC

PR

RE

SP

NPV

F1

1 Support Vector Machines

Train/Test Split
Kernel
Regularization (C)
Gamma

0.75(0.25)
rbf

2.66

0.141

91.80%

87.87%

96.66%

87.09%

96.42%

92.06%

2 TabTransformers

Train/Test Split
Activation Function

Number of Transformer Blocks

Number of Attention Heads
Dropout Rate

MLP Hidden Units
Learning Rate

Epochs

0.72(0.28)
Sigmoid
1024

1024

0.25
[1024,512]
0.05

1000

90.38%

86.66%

96.29%

91.22%

84%

95.45%

3 Deep Neural Networks

Train/Test Split
Layers

Units

Activation Function
Dropout

Optimizer

Epochs

Batch Size
Learning Rate
Momentum

0.79(0.21)

Input/3 Hidden/Output
512/256/128/64/1
tanh/tanh/tanh/sigmoid
Before Output Layer 0.2
SGD

6850

250

0.005

default

90.19%

85.18%

95.83%

85.18%

95.83%

90.19%

4 AdaBoost

Train/Test Split
Number of Estimators
Learning Rate

0.79(0.21)
200
1

89.50%

87.20%

94.60%

84.90%

93.60%

90.80%

5 XGBoost

Train/Test Split
Booster
Learning Rate
Gamma
Maximum Depth
Minimum Child Weight
Max Delta Step
Sub Sample
Lambda

Alpha

Tree Method

0.79(0.21)
gbtree
0.01
0.1

10
0.01

0

0.75

1

0.01
Auto

89.10%

86.00%

93.80%

85.10%

92.50%

89.10%

6 Logistic Regression

Train/Test Split

Solver

Regularization (Penalty)
C

0.71(0.29)
newlon—cg
none

3.1

80.73%

76.56%

89.09%

72.22%

86.66%

82.35%

7 TabNet

Train/Test Split
Learning Rate
Batch Size
Virtual Batch Size

0.79(0.21)
0.9

1024
1024

76%

74.70%

82.60%

74.70%

80.50%

76.50%

8 NODE

Train/Test Split

Number of Layers

Depth

Number of Trees (per layer)
Learning Rate

Batch Size

Epochs

0.71(0.29)
5

10

1

0.1

26

9000

76.92%

77.77%

73.68%

80%

76.19%

75.67%

4.1. Discussion

In this study, several models were created to analyze HRV cha-
racteristics to detect cardiovascular risks. The results obtained
demonstrate the high efficiency of Al models in predicting car-
diovascular disease. However, the results obtained in this study
outperformed previous implementations.

First, the authors in [19] applied similar models to the same
dataset. Nevertheless, the results obtained in this study exceeded
their results. For example, their SVM model recorded accuracy,
recall and specificity results were 89.00%, 86.30% and 91.80%
respectively, whereas our results are 91.80%, 96.66% and 87.09%
for the same performance metrics. In addition, the performance
metrics of their Multi-Layer Perceptron model were Accuracy:
78.10%, Recall: 86.30%, Specificity: 69.90% and our model
recorded 90.19%, 95.83% and 85.18% for the same metrics.

In addition, our SVM model achieved 91.80% accuracy, the
highest performance among all previous implementations. For
example, the SVM models in [13] recorded an accuracy of
88.64%, 82.95% and 82.58% for the Linear, Polynomial and
RBF kernels, respectively. Moreover, the accuracy of SVM in
[14,19, 23] was 79.81%, 89.00% and 85.19%, respectively. Even
though the accuracy is close, other metrics such as Precision and
Recall clearly outperform the previous results by a large margin.
Knowing that Recall measures how a model correctly classifies
True Positives, the models presented in this study are more accu-
rate in predicting whether a person will have a CVD in future.
The high recall for SVM, DNN, and XGBoost, which are 96.66%,
95.83% and 93.80%, respectively, reflects the highest ability of
all implementations to correctly predict that a person is in the
cardiovascular risk zone.
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Likewise, the DNN model presented in this article also outper-
forms all previous implementations. The accuracy of this model is
90.19%, whereas the multilayer perceptron in [13, 19] is 86.67%
and 78.10%, and the accuracy of artificial neural networks in
[11, 21] is 76.60% and 85.30%. Moreover, precision and recall
are significantly higher than the previous implementations, which
also reflects a higher capability in cardiovascular risk detection.
Table 3 provides a detailed comparison between the results of the
models presented in this article and the previous implementati-
ons. The symbols of the performance metrics used in this table
are similar to those in Table 2, and an "NA" symbol indicates that
the corresponding metric was not mentioned in the associated
study.

On the other hand, none of the previous implementations
used XGBoost, which also outperformed the previous imple-
mentations with an accuracy of 98.10% and a recall of 94.60%,
reflecting high efficiency in predicting cardiovascular risk, in
contrast to the implementation of NODE, which achieved an
accuracy of 76.92%, which is not comparable with the previous
implementations.

Finally, the SVM, DNN, and XGBoost models discussed in
this study can be considered the most accurate models for predi-
cting cardiac disease and events. Even the implementations in
[15, 19] had higher accuracy and relatively higher recall, but
their models were developed to detect Sudden Cardiac Death only
minutes before its occurrence. For example, the model mentioned
in [15] achieved 99.73% accuracy in predicting sudden cardiac
death one minute before its onset, but the performance drops to
83.93% when the event is predicted four minutes before its occur-
rence. However, the models presented here are able to predict
cardiovascular disease 12 months before its onset, demonstrating
high efficiency in predicting cardiovascular disease and cardiac
events long before their onset, thus increasing confidence in the
use of Al in detecting and predicting cardiac disease and related
events.

4.2. Challenges & Future Recommendations

Although Machine Learning are ready to play a significant role in
predicting CVDs, there are a number of potential obstacles that
might occur in the course of their deployment. What follows are
some of the most typical problems that arise in such a setting:

o Data Readiness and Availability: Data determines machine
learning model performance. The availability of more data
will help in improving the performance of the smart models
and therefore increase their accuracy in predicting CVDs.
However, the availability of data is prone to different problems
such as the legal or ethical restrictions. However, assumed
available and accessible, the data to be used may be noisy since
digital ECG recordings are more vulnerable to environmental
noise. Artefacts—unwanted signals or signal distribution-
s—interfere with the signal in noisy data. In this context,
Intrinsic Artefacts come from the monitored body, whereas
Extrinsic Artefacts come from their surroundings [48, 49]

o Data Privacy and Confidentiality: Although the technical stru-
cture of the models, data cleanliness and readiness, and other
factors affect model accuracy, more data to train Al models
usually improves their accuracy. For privacy and secrecy con-
siderations, gathering data is the largest hurdle in constructing

Al'models in the real world. Society, governments, and organi-
zations are enhancing data privacy and security. The European
Union’s General Data Protection Regulation (GDPR) [50],
China’s Cyber Security Law [51] and hundreds of other pri-
nciples have been legislated worldwide. These restrictions
safeguard private data, but also make it harder to gather data
to train models, which makes it harder to increase model
performance [49]

o Users Acceptability: User acceptability, adoption, and enga-
gement are of the most significant obstacles to using Al and its
branches to identify CVDs. Using those technologies to pre-
dict illnesses has met with mixed reception from users owing
to concerns about privacy, discomfort, and other contextual
factors

o Additional Computation-Cost: Due to the additional compu-
ting imposed by the added tasks such as data balancing and
noise removal, an increase in computation time is obtained,
and thus this imposes additional slowdowns that may impair
the overall performance of the models

However, several approaches have been made to resolve those
challenges in the attempt to enhance the feasibility of using
Al and its descendants to predict cardiac illness. Those soluti-
ons are considered as hot topics that are being studied carefully
nowadays:

o Automating Noise Removal: Before processing the signals,
artifacts, both extrinsic and intrinsic, that obfuscate the signals
should be eliminated or greatly reduced. This goal has already
been accomplished by a number of existing solutions, some of
which are discussed in Refs. [52]. Thus, research into automa-
ted noise reduction to clean and preprocess the data to enhance
the precision of physical tiredness detection in the workplace
is warranted

e Privacy Preserving: Data used in Machine Learning models
training should be stored on a local server or distributed
to decentralized storage and processing devices to con-
struct and train the models. Thus, the model has complete
access to the subject’s data, whether anonymous or label-
led by the subject. Federated learning (FL) may address
this issue. Federated learning is a defined as collabo-
rative distributed/decentralized machine learning privacy-
preserving method that trains models without transferring data
from edge devices to a central server. Instead, edge devices
communicate learned models with the central server, which
works as an aggregation station to create the global model
without understanding the embedded data [53, 54]. The use
of Federated Learning into CVDs prediction would help reso-
Ive privacy issues and therefore resolve the challenges in this
regard

o Increase Accuracy, Explainability and Trust: Predicting the
onset of cardiovascular disease is crucial in light of the gro-
wing health burden caused by this condition. The black box
nature of the models used, however, must be reduced as much
as possible, and the accuracy of Al tools and procedures in
this area must be increased. Devices that are more accurate
and easier to explain will be more likely to be employed as
a CVDs prediction device. In this context, several technolo-
gies can be adopted such as the one mentioned in [55] that
automates assessing the quality of a smart model
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Table 3. Comparison with Previous Implementations.

Study Model AC PR RE Sp NPV F1
Support Vector Machines 91.80% 87.87% 96.66% 87.09% 96.42% 92.06%
TabTransformers 90.38% 86.66% 96.29% 91.22% 84.00% 95.45%
Deep Neural Network 90.19% 85.18% 95.83% 85.18% 95.83% 90.19%
AdaBoost 89.50% 87.20% 94.60% 84.90% 93.60% 90.80%
Our Study
XGBoost 89.10% 86.00% 93.80% 85.10% 92.50% 89.10%
Logistic Regression 80.73% 76.56% 89.09% 72.22% 86.66% 82.35%
TabNet 76.00% 74.70% 82.60% 74.70% 80.50% 76.50%
NODE 76.92% 71.77% 73.68% 80.00% 76.00% 75.67%
[11] Attificial Neural Network 76.60% 70.70% 82.90% 71.40% NA NA
Support Vector Machines (Linear Kernel) 88.64% 90.84% 86.36% 90.91% 86.96% NA
[13] Support Vector Machines(Polynomial Kernel) 82.95% 80.85% 79.55% 86.36% 85.37% NA
Support Vector Machines (RBFKernel) 82.58% 79.45% 77.27% 87.88% 86.44% NA
Multi Layer Perceptron (Top15 Features) 86.67% 100% 73.33% 100% 78.95% NA
[14] Support Vector Machines 79.81% 21.15% 91.67% 79.08% 99.36% NA
15 MLP (A Minute Before the SCD Event) 99.73% NA NA NA NA NA
[13] K-NN (A Minute Before the SCDEvent) 98.32% NA NA NA NA NA
(18] lS)VM '(2 minutes before VF Event) 96.36% NA NA NA NA NA
enalized Neural Network 93.64% NA NA NA NA NA
[19] Support Vector Machines 89.00% NA 86.30% 91.80% NA NA
Multi Layer Perceptron 78.10% NA 86.30% 69.90% NA NA
[21] Artificial Neural Network 85.30% 83.30% 88.20% 82.40% 87.50% NA
[22] MIL Statistics Algorithm 85.47% 92.11% 86.42% 83.33% NA NA
Vote 87.41% NA NA NA NA NA
[23] Naive Bayes 84.81%  NA NA NA NA NA
Support Vector Machines 85.19% NA NA NA NA NA
5. Conclusion References
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